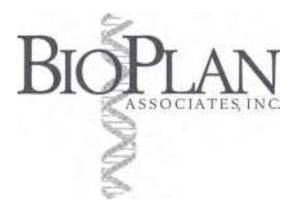

FIRST EDITION

Biopharmaceutical Expression Systems and Genetic Engineering Technologies Current and Future Manufacturing Platforms



by Ronald A. Rader

FIRST EDITION

Biopharmaceutical Expression Systems and Genetic Engineering Technologies Current and Future Manufacturing Platforms

by Ronald A. Rader

Title:	Biopharmaceutical Expression Systems and Genetic Engineering
	Technologies: Current and Future Manufacturing Platforms
Edition:	1st edition
ISBN:	ISBN: 1-934106-14-3
Author:	Ronald A. Rader (President, Biotechnology Information Institute; Rockville, MD)
Publisher:	Bioplan Associates, Inc. 2275 Research Blvd, Suite 500, Rockville, MD 20878 Web site: www.bioplanassociates.com
Managing Editor: Layout and Cover Design: Date:	Eric S. Langer ES Illustration and Design, Inc., Arlington, VA November 2008

Copyright © 2008 BioPlan Associates, Inc.

All rights reserved, including the right to reproduce in whole or in part in any form. No part of this publication may be reproduced, stored, in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher.

This work and all of its contents are protected under U.S. and international copyright. Contact the publisher to request permission to copy or extract any text, information or data. The author and publisher cannot be held responsible for any consequences arising from any errors or omissions, nor for any consequences arising from use of the information presented.

For information on special discounts or permissions contact: BioPlan Associates, Inc. at 301-921-9074 or info@bioplanassociates.com

Introduction and User Guide

This is the 1st edition of *Biopharmaceutical Expression Systems and Genetic Engineering Technologies: Current and Future Manufacturing Platforms*. Expression systems encompass the technologies - biological materials and associated know-how - needed to genetically modify organisms for the manufacture of recombinant proteins (including glycoproteins and antibodies). This book is designed to be the single most informative source concerning commercial biopharmaceutical product manufacturing-related expression systems and basic engineering technologies, with emphasis on those currently used for biopharmaceutical manufacture and those available for commercial licensing for this purpose; providing basic information for the knowledgeable user to determine relevance for their applications; conduct further research and/or contact technology licensing sources.

The primary goal is to inform the user of the many technologies in commercial use and those claimed to be useful for commercial-scale manufacture of biopharmaceutical products, rather than provide detailed or comparative information about each. This directory is the result of multiple man-months of cumulative effort in information acquisition, organization and analysis. As such, it is a high value-added product that should save you considerable time and effort in finding technologies relevant to your interests. It should reliably cover relevant technologies currently being used commercially, those being actively offered for licensing, those discussed in industry news sources and review articles, and those offered by leading genetic engineering and bioprocessing technology licensors. However, it does not cover every relevant published or patented technology.

Coverage - Simply stated, coverage concentrates on host cells/organisms, basic genetic engineering methods, recombinant constructs and the many technologies available to enable or improve expression of desired proteins, including glycoproteins and antibodies. This directory concentrates on the core genetic materials (e.g., host cell lines and organisms) and related methods and materials, e.g., vectors, promoters, selection and amplification methods, chaperones, etc., used or claimed useful for commercial-scale manufacture of biopharmaceutical products, primarily recombinant proteins and monoclonal antibodies. Thus, this directory concentrates only on what is used or needed for upstream manufacture (and nothing else).

This directory includes broad platform technologies, generally defined by the living host cells/ organisms being used, which may be natural or genetically modified to begin with; and the basic genetic engineering technologies needed to get the desired gene sequence(s) into these hosts and get these genes efficiently expressed (transcribed and translated) for commercial-scale manufacture. Thus, this directory includes a number of specific genetic engineering technologies, e.g., vectors, promoters, chaperones, affinity fusion protein purification schemes, etc., useful with all, some or specific platform technologies/host systems.

NOTE!

This reference is based on published and unpublished information. It is recommended that readers confirm information, and obtain updates from license holders.

Technologies involve or can be defined or viewed in many ways or on many different levels. For example, one may broadly refer to yeast or baculovirus expression vector technologies, actually a grouping or classification of multiple technologies. And very often, what is referred to as a specific technology actually involves multiple components, each of which may be considered a technology, e.g, be separately available for licensing. In most or nearly all cases, technologies have been described in or exemplified by patents. Technologies involve know-how or enabling knowledge and related information. With biopharmaceutical manufacturing and genetic engineering technologies, this invariably involves information, e.g., methods and gene/protein sequences, often embodied in genetic constructs and culture collection deposits. In the biopharmaceutical area, just about every technology of interest has been or is in the process of being patented; and most technology acquisition or other technology transfer involves patent licensing. In many cases, all one needs to effectively acquire rights and implement a desired technology is to license related patents. In many other cases technology acquisition/licensing should involve or requires initial or even continuing technical assistance from the inventors or the organization handling licensing.

Coverage includes both technologies currently in predominant use for biopharmaceutical product manufacture, with these primarily based on use of *E. coli*, Chinese hamster ovary (CHO) cells and yeasts, primarily *Saccharomyces cerevisiae*, and new and upcoming alternative platforms/hosts, most of which have not yet been adopted/adapted for commercial-scale manufacture. Much of the older technologies, particularly those in use since the 1980s (including most *E. coli*, CHO and yeast technologies), have in recent years either lost or will soon lose patent protection. Many users of this directory will likely be interested in these proven, regulatory agency-familiar, cheap (now or soon no licensing expenses involved) but, in many respects, inefficient technologies. Most, if not most, directory users are presumed to be interested in new alternatives and/or significantly improving current in-house platform technologies, e.g., by adopting newer technologies offering higher yields.

What is not included - If a technology does not involve genetic materials and their manipulation, generally host cells/organisms and genetic constructs or methods, it has not been included, no matter how relevant to biopharmaceutical manufacture. Thus, this directory does not include;

a) technologies relevant to specific products, e.g., product-specific gene/protein sequences; only technologies relevant to manufacture of all or broad classes of proteins, including glycoproteins and antibodies.

b) protein engineering or other molecule design technologies, unless substantially involving commercialscale protein expression. Thus, nearly all methods for designing and predicting protein structures are not included.

c) protein screening technologies, including selecting for desired active agent/product characteristics. An incredible number and diversity of screening technologies are available, but are not included.

d) some rather generic genetic engineering, molecular biologic laboratory technologies, with these sometimes discussed in brief generic entries. For example, there are hundreds of different chemical and physical agents and related methods used for transfection or modifying cells so that vectors or other genetic constructs get to and act upon genetic material within cells. Most of the related reagents and materials are readily available from multiple commercial vendors/reagent sellers, and most of the methods are readily available in standard references for molecular biology procedures.

Various basic, broad genetic engineering and molecular biology methods have been included where these have been patented and/or require taking a license for commercial use. Many directory users will be

unpleasantly surprised to learn that many of the most basic genetic engineering and molecular biologic method and reagents are patented, and require taking royalty-bearing licenses for commercial use.

e) generic, non-genetic engineering-based methods for host cell/organism modification, e.g., nontargeted or random mutation-based methods; e.g., exposure to mutagens and selection for desired characteristics or adaptation to specific; e.g., protein-free, culture media by growth, repeated passages and selection of adapting cells/organisms.

d) microorganism and cell culture, culture media, fermentation, and related bioreactor and fermenter technologies. This directory does include various microbes, other organisms and plant, insect and animal cell lines, many adapted to specific types of culture or bioreactors, e.g., adherent or suspension culture, and/or adapted to specific types of culture media, e.g., serum- or protein-free media; but does not include technologies related to bioreactors, fermentors, bioreactor/fermentor control, etc.

e) downstream technologies, including purification. This directory does not include separation, purification, formulation, viral inactivation or other downstream technologies. This directory does include genetic and protein expression-based methods for downstream processing, particularly purification using fusion proteins for affinity-based purification, but does not include chromatography and other technologies for protein purification.

In many cases, technologies, particularly those being offered for licensing, were described as such by their owners/licensors; and the author generally followed how inventors/licensors described their technologies. In many other cases in which a technology description is not clear, this author had to identify and define technologies. Thus, the author often defined and developed his own technology descriptions, presuming that essentially every/any technology, particularly those fully publicly disclosed (e.g., in patents), is available for licensing (for the right price).

Luckily, the biotechnology industry is a relatively open market for technology licensing, i.e., most every non-product-specific technology is available for licensing, if one bothers to ask. However, there are some exceptions in certain areas, notably with higher plants, e.g., field crops, and transgenic mammals, where some companies simply hoard (do not license) their technologies or are very selective in their licensing., e.g. not licensing them to companies that might be worthy competitors.

Monographs Content - Descriptive entries are provided for ~340 technologies. Data fields are:

1) Title - The various names of associated with technologies and major components are included, optionally followed by a hyphen and the author's annotation of the host/organism system(s) used and/or special capabilities of the technology (e.g., glycosylation; antibodies manufacture).

2) Organizations involved - The major organizations involved are listed along with characterization of their role or involvement in the technology, e.g., licensor, patent assignee, research, etc.

3) Description - A summary of available information about the technology concentrating on functionality, improvements provided, etc.

4) Use with - Brief characterization of the main host cells/organisms used with the technology.

5) Use to make - A brief characterization of the types of products the technology is designed or claimed to be useful for.

6) Background - An optional field presenting claimed benefits or desirable characteristics of the technology.

7) Patents - Information about relevant patents.

8) Licensing information - Information about licensing contact(s), optionally with information about related commercial actitivies, e.g., know licensees.

9) Products made with this tech. - An optional field presenting information about biopharmaceutical products made using/incorporating the technology.

10) Further info. - An optional field usually presenting citations to related publications.

Organization of Monographs - The monographs are divided into two main sections:

1) The first section presents broadly-enabling, platform-type technologies, particularly novel host cells and organisms.

2) The second section presents more specific, supporting and component technologies. These may be broadly generic, applying to diverse hosts/platforms, or applying to multiple or just one major host/platform.

Note, these divisions represent purely subjective decisions on the part of the author! It is often very difficult to determine the relevance and utility of these technologies. What may be presented as a more specific, supporting or component technology, e.g., vectors or promoters useful with a specific organism or class of organisms, may along with other technologies be the single critical components enabling or defining a new manufacturing platform technology.

Within each of the two main technology sections, monographs are loosely classified or grouped by broad platform technologies, generally host cell/organism classes, e.g., E. coli, yeasts, mammalian cells, etc. However, keep in mind that most technologies are or can be presumed to either be relevant to multiple broad platforms, as is often presented in monographs, or may actually be relevant to just one specific platform, e.g., vectors claimed useful with yeasts may actually be only or primarily useful with *S. cerevisiae* or another yeast (but available information does not make this clear). The author generally followed the lead of available information from the licensor, including patents, in terms of describing the utility of specific technologies.

Indexes - The following indexes are provided:

- 1) Company/Organization
- 2) Subject
- 3) Primary Host Systems

See the text at the beginning of each of these indexes for further information about their coverage, conventions and limitations.

Information Sources Used - The primary source for the information in this directory was documents collected by the author specifically for this purpose over an approximate 3-year period. The author of this directory is also the author of *Biopharmaceutical Products in the U.S. and European Markets*, the only reference book/database concerning biopharmaceuticals (now in its 6th edition, 2 vol., 1602 pages. Besides deriving information about biopharmaceutical products manufacture from this source, as part of developing/maintaining this publication the author has long engaged in a continuous intensive competitive intelligence gathering and analysis program (i.e., he intensively reviews the world's press releases, industry newsletters, meeting abstracts and every other relevant publicly available information source). Even before starting recent work on this directory, the author had over 2,500 documents collected for use

in developing this directory. Thus, the author is confident that relevant technologies discussed in industry publications and at industry-oriented conferences in recent years have been included.

The monographs were largely assembled by modifying and piecing together text retrieved from diverse sources, mostly those available on the Internet (and within the bounds of fair use). Thus, those using this directory and doing their own research will likely be able to recognize text adapted from or extracted from Web sites, patents, articles, etc. However, in all cases, the author made sure to provide additional, value-added information and analysis. This includes providing what should be useful contact information, including use of the membership directory of the Licensing Executive Society (LES), the database of registered patent attorneys/agents at the U.S. patent office Web site, and otherwise finding E-mail addresses for relevant corporate contacts.

Other information sources and methods used in developing this directory include:

1) meeting announcements and abstacts - The world's major biotechnology-related conferences, particularly those with a commercial orientation or involving relevant sessions, have been monitored for several years.

2) literature searching - Some basic searching of the peer-reviewed biomedical literature, e.g. PUBMED, was performed, including searching for overview and review-type articles concerning broad platform technologies. In many cases, the biomedical literature was also searched concerning specific technologies.

3) patent searching - Much searching of U.S. patents and applications (primarily using U.S. patent office full-text databases) and international patents/ applications (primarily using EspaceNet) was performed. Besides patents often being required to explain or obtain basic descriptive information concerning technologies, patents very often provide analyses of related prior art (previous or competing technologies).

4) Web sites - The Web sites of essentially every company/organization included in this reference, and many others, were examined for technology-related information and to determine optimal contacts for licensing-related inquiries. This included checking the online technologies available for licensing listings of those organizations well known as sources of bioprocessing and genetic engineering technologies/ patents. For example, the University of California and NIH have consistently been among the leaders in obtaining U.S. genetic engineering patents; RCT is the licensor for several basic platform technologies, and the Boyce Thomson Institute and Texas A&M University are sources for various insect cell/ baculovirus expression technologies.

5) federal research funding and contracts - CRISP and other databases covering NIH and other federal agency research funding and contracts were searched. Thus, the various expression systems being developed largely with federal funding, mostly related to biodefense, are included, e.g., the DARPA, DOD, and NIAID, NIH, grants and contracts seeking to develop systems for rapid manufacture of large amounts of recombinant proteins, e.g., millions of doses of vaccines in just several months.

6) licensors/technology sources - The licensing contacts of hundreds of organizations, including the majority of those mentioned, were contacted by the author by E-mail, requesting public/publishable information about relevant technologies, particularly those available for licensing.

As further discussed, there are various reasons why many companies (vs. universities) are hesitant to provide information for directories. Many are unprepared for anyone requesting nonproprietary

information about their technologies available for licensing (making this directory all the more valuable). And despite it being counter-productive, technology transfer/licensing professionals, and many scientists/ inventors involved in licensing and invention marketing simply prefer to avoid disseminating information about licensing opportunities. Many licensing professionals feel that technology transfer/licensing is best practiced, with public information dissemination viewed as a less sophisticated approach.

Information Sources Not Used; Limitations/Caveats- Bound by limitations of time and expenses, the author did not use a number of relevant information resources and acquisition methods (that directory users may want to follow-up with). For example, with over 300 technologies, if an information resource or acquisition method was not free, i.e., involved spending money, it almost certainly was not used. Thus, the author did not use high-end, fee-based online databases, e.g., DERWENT patent databases, online versions of *Chemical Abstracts*, etc. Some fee-based databases were searched using the online databases at a local university library, along with document delivery services, but primarily to retrieve review articles, not to retrieve information about specific technologies. Otherwise, the author concentrated on finding and summarizing information to provide useful, but not all, information about technologies' functions/characteristics, advantages and ownership. Thus, information retrieval was not exhaustive - the author stopped looking when seemingly adequate descriptive and ownership information was retrieved.

Users should exercise caution in interpreting what technologies are actually relevant or useful for! The author generally describes technologies much as described by their licensors and/or inventors. Many times, licensors/inventors tend to restrict their claims about functionality and utility only to what they have studied or documented, while other times they may be too expansive in their claims. The author's descriptions reflect the content of inventions-available-for-licensing descriptions, patent descriptions and claims, i.e., available information. For example, some descriptions (reflecting their source) are probably too broad in their claims, e.g., may be primarily or actually relevant to one or a few members of a class of organisms, while licensors/inventors claim utility for an entire class of organisms (e.g., an invention actually relevant to only human cells may be claimed as relevant to all mammalian cells or eukaryotes). Conversely, inventions may be described as relevant to xyz specific organisms or uses, but may actually be relevant to many others (e.g., an invention claiming relevance to E. coli may actually be useful with all bacteria or all organisms).

Also, be aware that many major sources of biopharmaceutical processing technology simply make it hard for anyone to find and approach them or figure out what licensable technologies they have. And, many technology sources are seemingly only interested in dealing with major players. For example, essentially all of the long-surviving biotechnology/biopharmaceutical companies, i.e., those around for several decades, have amassed considerable portfolios of patented and also unpatented proprietary manufacturing-related technologies. However, few technologies from these major companies, e.g., Genentech, Amgen, Biogen Idec, Wyeth/Genetics Inst., J&J/Centocor, etc., are included in this directory. Adequate information is simply unavailable, with essentially none of these companies publicly disclosing their manufacturing- or basic genetic engineering-related technologies available for licensing, their licenses granted or responding to the author's inquiries. Similarly, most every contract manufacturing organization (CMO) has likely developed in-house proprietary technology and/or licensed-in and is able to offer sublicenses or access to technologies from others. These technologies have been included where information was available, but following the general pattern, seemingly few CMOs bother to disclose their proprietary technologies in their public information or only do it in vague generalities [vet another paradox in the marketing (or lack of it) of biopharmaceutical manufacturing and related genetic engineering technologies].

For many users, examining all entries will be the most effective way to use this directory, in addition to using its organization into topical sections and its indexing. Knowledgeable persons will likely be able to see and make their own connections and conclusions about the relevance of technologies. Many technologies that may seem irrelevant, e.g, from their titles, placement and/or indexing, may actually provide new ways of approaching problems or provide improvements that you had not been looking for.

Finding Further Information - So, with this directory designed to get you started, what can or should you do after finding technologies of interest. Obviously, much depends on your particular interests. Your options include:

a) Search the world's publications, Web sites, patents, etc. Use Google and one or more complimentary Web search engines. Search the biological and chemical literature, e.g., PUBMED, use the online versions of *Chemical Abstracts*, *Biological Abstracts*, and do not ignore the chemical engineering literature, which may also have relevant information. Whether from going through their Web site and/or searching the Web, read up about the licensor organization and any related licensing track record. Use patent databases, including better fee-based ones, to retrieve further information about patents, e.g., what is their status, which countries are patents being sought in, etc. For old(er) technologies, e.g., those invented in the 1980s or with patents granted about 17 or more years ago, check to whether patents have expired in countries of interest. If so, you may not need to take a formal license. If a technology involves a biological material, e.g., cell line, and even if it is in the public domain, it cannot hurt to license this from the original source, vs. getting a derivative from a culture collection or commercial vendor. This may save considerable testing and avoid documentation problems with FDA and other regulatory agencies.

b) Network with and/or delegate or pass-upwards your inquiries to others in your organization, particularly your own technology transfer office or professionals. Licensor contacts, particularly licensing professionals, are more likely to respond to inquiries from other technology transfer professionals, patent attorneys, corporate executives, etc., vs. inquiries from scientists or mid-level managers.

c) Make contact with the licensor - The Company/Organization Index includes a contact point to initiate licensing-related inquiries. The response you get from these or other contacts may depend on your organizational affiliation, e.g., whether you are perceived as a potential client or competitor, and whether you are perceived as having licensing negotiation authority. Of course, it is always best to be prepared and as knowledgeable as one can be when interacting with licensor contacts, many of whom are already overworked with dealing with obtaining patents on inventions, negotiating licenses. It is probably best to volunteer up-front to sign non-disclosure agreements, even if you are only seeking public information, with this showing that yours is more a genuine licensing vs. simply an information or competitive intelligence gathering request. If you don't get a prompt response, make personal contact because many technology transfer professionals prefer personalized information dissemination and they prefer personal contacts before they respond.

Most every licensor will or should be able to offer serious inquirers various options, ranging from sending out information (which may require a non-disclosure agreement), material transfer agreements (MTAs) or other standard agreements allowing access/release of materials, e.g, cell lines or vectors, for further study, usually with many explicit limitations on use; licenses allowing limited in-house technology evaluation; and other options short of a full licensing with big up-front licensing payments and royalties on sales.

d) Contact the inventor(s). Besides being the most knowledgeable, they are more likely to be scientists, and will likely be more responsive at least in terms of providing you with public/published information

and even discussing your potential interest/application. And, many inventors make themselves available for you to hire as consultants or contractors.

e) If you want an outside expert(s)/consultant(s) to do further research and make initial contact, which could include not disclosing your identity contact the publisher, BioPlan Associates, Inc.; info@bioplanassociates.com; 301-921-9074.

Monographs Table of Contents

Broad/Platform Technologies Entry Number Monograph Titles Cell-free systems 100 101 102 Broad, cross- or multi-platform technologies 103 In vivo linearization; InVoLin; Meganuclease Recombination System (MRS) - improved 104 105 Aminoglycoside phosphotransferase marker; Neomycin phosphotransferase I (nptl) marker; 106 107 Cellulose binding domain (CBD) fusion protein affinity tags; pET-CBD - universal25 Controllable Self-Cleaving Intein Derivative; IMPACT-CN; pH-sensitive self-cleaving fusion 108 protein affinity purification tag - universal25 109 Cre-lox mediated in vitro recombination; Cyclization Recombination/locus of X-over P1; 110 111 deltaPhase; Elastin-like polypeptide (ELP) fusion protein tags - chromatography-free 112 Dual expression vectors; Dual Affinity ReTargeting (DART) - antibodies; bacteria and 113 114 115 116 Fusion protein expression systems; Affinity purification tags and chaperones - universal34 117 118 119 GUS reporter system (beta-glucuronidase); GUS control vector - prokaryotes; plant cells; 120 121 His tags; Poly-Histidine fusion affinity tag technology; 6xHistidine-tag - univeral; 122 123

Entry	Number	Monograph Titles	
124	Lambda recombir	nation protein; Homologous recombination	39
125	0	combination System (MRS)/I-Scel; homologous recombination -	
126	÷	IIM14 and IIM22 - vector enhancers	
127		Ily-Boss; Monoclonal antibody 2-chains expression - universal	
128	-	GenePORTER - universal	
129	Poly(A) polymeras	e	46
130	Promoters		46
131	Recombinant DNA	A; Protein Expression; Cohen-Boyer	47
132	Reconstituting ch	emically orthogonal directed engineering (ReCODE) -	
	Unnatural amino a	acids; UAAs; E. coli; yeasts; mammalian cells	49
133	Selectable marker	rs; Selection of transformed cells; Reporter genes	50
134	•	e Modifier (SUMO) fusion protein tags; Split SUMOpro System; ase - universal	51
135	Strep-tag affinity f	fusion protein tag; Strep-Tactin purification - universal	53
136	Super core promo	oters; SCP1; Core promoters - "the strongest [promoters] ever made"	54
137		idyl aminopeptidase I (DPPI; DAPase Enzyme; cathepsin C) - Igs; universal	54
138	-	bacco Etch Virus (TEV) NIa protease - cleavage of fusion	
		ersal	55
139	Transfection - univ	versal	56
140	Translation Engine	eering expression; CODA; Computationally Optimized DNA	
	Assembly; Hot Ro	d Genes; Controlled Ribosomal Pausing - universal	57
141	White collar comp	blex (WCC) promoter; UV light induction - universal	59
142	Minos transposon	cell transformation - insect larvae; also eukaryotes	60
143	Coconut Express	cell-free translation - plants	60
Prok	ayotes		
144		ression technology (BCE); araB promoter - antibody fragments;	61
145	Subtilisin (psub) fu	usion protein tag expression; Profinity eXact expression - E. coli; CHO cells	
146	-	ced expression repression - prokaryotes	
Bact			
147		um expression - E. coli alternative	63
148		uper-oxidizing strains; Thiol-disulfide oxidoreductases (TDORs);	05
140		A) depletion - disulfide bridge optimization	64
149		chromosome (BAC) expression; pBAC vectors - bacteria	
150	Caulobacter cresc	centus expression; PurePro Caulobacter Expression System - eria hosts	
151		ssion System; NTNH promoter from Clostridium botulinum	

Entryl	Number Monograph Titles	
152	Flavobacterium heparinum expression - glycoproteins	68
153	Lactococcus lactis htrA- expression - protease depletion	68
154	Lactose (lac) promoters; Isopropyl-beta-galactosidase (IPTG) induction - bacteria	70
155	NIsin-Controlled gene Expression (NICE); Lactococcus lactis expression;	
	nisA promoter - antibiotic selection	70
156	P170 Expression System;Lactococcus lactis expression	71
157	Pfenex Expression; Pseudomonas fluorescens biovar I (MB101) - E. coli alternative	72
158	Plasmids stabilization	74
159	Pseudoalteromonas haloplanktis TAC125 (PhTAC125) - cold expression	74
160	Quasi-synthetic vectors; Synthetic gene sequences in vectors - bacteria	75
161	Ralstonia eutropha expression; Alcaligenes eutrophus expression	76
162	Rhodospirillum rubrum (bacterial) expression - membrane proteins	77
163	Staphylococcus carnosus expresion	78
164	Subtilin Regulated Gene Expression; SURE competency - B. subtilis	79
165	E. coli expression/vectors	80
166	CASCADE expression; pALEX1 plasmids - E. coli	81
167	Choline-binding fusion affinity tags - bacteria	82
168	Clean Genome E. coli; Stripped-down E. coli	82
169	GroEL, GroES chaperones; Chaperonins - proper folding; universal; E. coli	83
170	Methylobacterium extorquens (bacterium) expression	84
171	CANGENUS; Streptomyces (lividans and griseus) expression	85
172	Saccharomyces cerevisiae expression	86
173	Streptomyces stationary phase expression; SPE system; Streptomyces vectors; Secreted Protease Production (SPP) System	86
174	Streptomycetes hyper-inducible expression; PnitA-NitR system; Caprolactam induction - Streptomycetes	87
Yeas	ts	
175	ApoLife Yeast Expression; S. cerevisiae Twin Cassette Plasmids - antibodies in yeast	
176	Arxula adeninivorans expression - alternative yeast	
177	Chrysosporium lucknowense expression; C1 Express Hyperproducing Protein Expression System - fungi	90
178	CoMed system; Universal Yeast vectors; pCoMed vectors; Arxula adeninivorans-derived TEF1 promoter	91
179	Fungal expression systems	92
180	GlycoFi technology; Next Generation Biotherapeutics - Pichia pastoris; yeasts; glycosylation; antibodies	
181	Hansenula expression (yeast)	
182	Hansenula polymorpha (yeast) expression - E. coli alternative	
183	Kluyveromyces lactis expression; pKLAC1; Acetamidase/Acetamide selection;	
	K. lactis GG799 - yeast	95

Entry	Number	Monograph Titles	
184	NeuBIOS expre	ession; Neurospora crassa expression; NeuKARYON - filamentous fungi;	
	glycosylation;	Cabilly-Boss workaround	96
185	Neurospora ex	pression; cotA promoter - fungi	98
186	Ophiostoma e>	pression - ascomycetes fungi	98
187	•	on systems	
188	Zygosaccharor	myces bailii expression; Zbleu2 strain - yeast	100
189	EASYEAST; Sa	ccharomyces cerevisiae strains - easy protein release	101
190		and vectors; Saccharomyces cerevisiae cell lines - proper folding and	
191	Pichia pastoris	expression	
192	VelociMab; EE	SYR expression system; FASTR cell lines - CHO expression optimization	;
Plan	ts		
193	Plastid Transfo	rmation; Translation-based vectors (TBV) - plants	105
194	Chlamydomon	as reinhardtii chloroplast expression; promoter - algae, single-cell	106
195	Chlamydomon	as reinhardtii expression - algae, single-cell	106
196	Drosophila Exp	pression System (DES) - insect cell culture	108
197	Streptomyces	lividans	109
Euka	aryotes		
198	Antibiotic indu	cible promoters - eukaryotes	109
199	AttSite recomb	inases - precise gene insertion; eukaryotes	110
200	•	hormone (bGH) polyadenylation sequence - eukaryotes; expression	110
0.01			
201	•	nancers; Copy number increase - eukaryotic cells	
202	0	Recombination; Knock-out/knock-in animals and cells	112
203		ome Entry Sequences (IRES) RNA translation enhancers; pCITE vectors; IRES; pIRES - eukaryotes	110
204		le promoters	
204	0	c; Tet) Expression Systems - eukaryotes	
205		A-binding proteins (ZFPs); ZFP Transcription Factors - gene modification	
200	-	Ils; plant cells	
Prot	ozoa		
207		ance Expression System; CIPEX system;	
000		protozoa) expression	
208		nania tarentolae expression system - protozoa	
209		nus expression - protozoa express large proteins	
210		Tetrahymena (protozoan) expression	
211	letrahymena th	nermophila (protozoan) expression	120

5		
Anin	nals, misc.	
212	Milk protein promoter - proteins in milk of transgenic animals	121
213	Shrimp expression; Penaeus stylirostris expression; Taura Syndrome Virus (TSV)	
	IRES vectors - glycoproteins; antibodies	121
214	Transgenic rabbits - humanized polyclonal antibodies	
Man	nmalian	
215	AmProtein vectors - "stongest mammalian vector set"; universal	123
216	Anti-apoptosis expression system; BCL-xL or BCL-2 expressing cell lines -	
	CHO, NS0, BHK, SP2/0-Ag14	123
217	Autocatalytic cleavage sites; Mengo virus vectors; Scission cassettes - mammalian cells	124
218	Cell adhesion optimization; cdkl3, siat7e, and lama4 genes - antibody-expressing cells	124
219	CMV (human) promoter; Cytomegalovirus promoter; Complete Control Inducible Mammalian Expression System - mammalian cells	125
220	Cumate gene-switch; Q-mate Inducible Expression - mammalian cells	
221	Dihydrofolate reductase (DHFR) System - selectable marker/amplification;	
	CHO and NS0 cells	127
222	Flp-In expression system; FLP-Mediated Gene Modification in Mammalian Cells; FLP	
	recombinase - mammalian cells	128
223	Gene-Activated (GA) expression, in vivo - mammalian cells	129
224	Glutamine synthetase (GS) System - NS0, CHO, mammalian cells	130
225	GPEx Gene Product Expression Technology - mammalian; CHO	131
226	MARtech; Matrix Attachment Regions; Scaffold Attachment Regions;	
	SARs - mammalian cells	133
227	RheoSwitch Mammalian Inducible Expression System; RheoSwitch Ligand RSL1	
	promoter; Ecdysone receptor induction - mammalian cells; adjustable expression	
228	Selexis Genetic Elements (SGEs) - mammalian cell lines	
229	STabilizing Anti-Repression; STAR elements - expression enhancement; mamalian cells	
230	Ubiquitous chromatin opening element (UCOE) expression - mammalian cells	
231	Whey acidic protein (WAP) milk promoters - mammals	138
Chir	nese hamster ovary (CHO) cells	
232	ACE Expression System - MAb-expressing CHO cells lines	139
233	Boehringer Ingelheim High Expression System (BI HEX); CHO-DG44	139
234	CHO cell line (Puck); CHO-K1 cell line	140
235	CHO DG44 cells, DHFR-; CHO-DG44; DUK-XB11; CHO K1 DUX B11 (DHFR-) cells;	
	Dihydrofolate reductase selection/amplification, CHO cells	
236	CHO SSF cell lines - adherent CHO cells; protein-free media	
237	CHO Supercell; Targeted transfection; CHO DG44 cell line	
238	CHOZn CHO DG44 cell lines - antibodies	
239	GS-CHO Protein Free System; CHOK1SV cell lines - protein-free media	143

Monograph Titles

Entry Number

Entry	Number	Monograph Titles	
240	Sympress e	xpression; Human polyclonal antibodies (rpAB) - CHO cells	144
241	Baby hamst	er kidney (BHK) 21 cells; ATCC CCL 10	145
Hyb	ridomas		
242		RPHODOMA; Morphogenics; Hypermutation; PMS2 gene screening, n - human monoclonal antibodies from hybridomas	145
243	Cell-free sys	stem - glycoproteins; hybridoma	146
244		expression; EBx cells; Chicken embryonic stem cells; x cells; Duck EBx cells	147
Chic	kens/Poul	try	
245	Chicken egg	g expression; Transgenic animals	148
246	Chicken rim 149	ordial germ cells (PGCs) - Human proteins/monoclonal antibodies in chicker	ı eggs
247	OVA System	n; Avian Transgenic Biomanufacturing - chicken eggs expresssion	150
248	Transgenic p	poultry; avian transgenesis and nuclear transfer - proteins in chicken eggs	152
249	Windowing	Technology - transgenics avians/chickens	152
Hum	an		
250	CEVEC Amr	niocyte Production (CAP) expression; Human amniocytes, immortalized	153
251	. ,	overexpressing NS0 cell lines - NS06A1(100)3 cell line - antagonize Mabs	153
252	Cell fusion, I	NS0 cells - antibodies	154
253		/3-ketosteroid reductase (p3-KSR) expression - cholesterol duction of NS0 cells	155
254		ss human cell lines; NM-F9 cell line - glycolysis	
255		nary preB lymphocytes; HupreB cells - human monoclonal antibodies	
256	-	myeloma cell line	
257		cells; NS0 cells, protein- and cholesterol-free - antibodies	
258	PER.C6 exp	pression; Extreme density (XD) Technology - glycoproteins; antibodies	159
259		oson vectors - transgenic avian/chicken cell culture	
260	Sp2/0-Ag14	cells - protein-free media; antibodies	161
261		II line, protein- and peptide-free (Hektor G) media; human kidney (HEK 293) cell line -	
262	-	pression	
263		pression	
264		l lines	
265		cell line	
266	HKB-11 (HK	(B11) expression; Hybrid of kidney and B cells - HEK-293 alternative	165
Plan			
267	Agrobacterii	um tumefaciens; Ti plasmids - transgenic plants	166
268	-	sistance markers - plants	

Entry	Number Monograph Titles	
269	Chloroplast expression - plants	
270	Chloroplast Transformation Technology (CTT) - plant cells	
271	Coupled regeneration/ transformation, plants	
272	GENEWARE expression; Tobacco mosaic virus (TMV) vectors - tobacco; plants	
273	Glyco-Engineered Moss; Physcomitrella patens expression; moss expression	
	promoting regions (MEPRs) - glycosylation; antibodies	171
274	iBioLaunch expression; Launch vectors - proteins and Mabs in plants	173
275	LEX System; Lemna (duckweed) expression - algae, whole plants	174
276	Nuclear transfer Cultured inner cell mass cells (CICM) - transgenic animals;	
	cloning from somatic cells	176
277	Nuclear Transformation Suite, plants	177
278	Plant expression - glycosylation	177
279	pPIPRA vectors - plants; public domain	178
280	ProCellEx Plant Expression - plant cells; glycosylation	178
281	Proficia expression - transient expression, plants	179
282	RNA-dependent RNA polymerase (RdRP) - universal	179
283	Stratosome Biologics System; Oilbody expression; Safflower plant seed expression.	
284	Super-mas Plant Gene Promoter; Gelvin promoter; (Aocs)3AmasPmas - plants	181
285	TransBacter Gene Transfer System -plants; royalty-free	
286	Ubiquitin linkage domain - multiple proteins in transgenic plants	
287	Ubiquitin plant promoters	
288	Zara technology; Protein body-inducing sequence (PBIS) fusion proteins;	
	Recombinant protein body-like assembly (RPBLA); StorPro organelles	
	(protein encapsulation); Prolamin fusion proteins - eukaryotes	
289	CleanGene plant transformation	185
290	Plastids (chloroplasts) expression - plant cell culture	
Inse	ects	
291	High Five cell line (BTI-TN-5B1-4, ATCC CRL 10859); Trichopulsia ni cell line -	
	baculovirus host cells; insect cell culture	187
292	Insect cells glycosylation	187
293	Insect cells glycosylation	
294	Insect cells/Baculovirus expression systems; Baculovirus expression vector systems (BEVS)	189
295	PERLXpress; TRANSPILLAR larvae; Trichoplusia ni larvae expression -	
200	transformed caterpillars	
296	Trichoplusia ni (cabbage looper) cell lines; BTI-TN-MG1; ATCC CRL 10860;	
	BTI-TN-5B1-4; ATCC CRL 10859	192
297	Trichoplusia ni (cabbage looper) cell lines; H5CL-B and H5CL-F;	
	BTI-TN-5B1-4-derived insect cell lines	
298	Baculovirus expression vector systems (BEVS)	193

Entry	Number	Monograph Titles	
299	InsectSelect Prot	ein Expression System - insect cells; avoid baculoviruses	
300	Mimic Sf9 Insect	Cells - mammalian-like glycosylation	195
301	Polydnavirus vec	ors - insect cells; baculovirus altnerative	195
302	Pre-occluded Viru	is (POV) baculovirus vectors; Insect cells, per os (oral)	
	baculovirus infect	ion	196
303	Spodoptera frugi	perda Sf-21 cell line - baculovirus host insect cells	196
304	Spodoptera frugi	perda Sf-9 cell line - baculovirus host insect cells	197
305	NusA E. coli fusic	n proteins - eukaryotes; protein solubilization	197
Othe	er broad/unive	rsal and older technologies	
306	Enterokinase - fu	sion protein cleavage	
307	Phage lambda pr	omoters; PL promoter; PR promoter - E. coli	198
308	Phage T5 promot	er	199
309	WI-38 cell line, N	ormal human fetal lung fibroblasts	199
310	Alkaline Phospha	tase; Calf Intestinal Alkaline Phosphatase (CIAP) - prevent vector	
	recircularization		200
311	Benzonase; Serra	tia marcescens endonuclease - polynucleotides breakdown	200
312	DNA Ligase (E. co	Dli)	200
313	Site-directed mut	agenesis	201
314	T4 DNA Ligase		202
315	T4 RNA Ligase		202

More Speci/ c and Component Technologies

316	Altogen transfection; RNAi gene silencing	203
Bacte	eria/Prokaryotes	

317	Profuse vectors; Cisperone chaperone fusion tags - E. coli; Saccharomyces cerevisiae	.203
318	Bacterial transcription promoters	.204
319	BresaGen fusion protein expression - E. coli	.205
320	Cold-Induced expression - Bacillus subtilis	.205
321	desA promoter, iron-regulated; DmdR repressors - Actinomycetes	.205
322	E. coli. vectors; Mnt-Arc promoters; T1 and T2 rrnB ribosomal terminators - bacteria	.206
323	pAVEway expression - E. coli and Pseudomonas	.206
324	pTAT-HA plasmids - E. coli; bacteria	.207
325	Twin-arginine translocation (Tat) system; Tat nanomachine - protein folding, then secretion;	
	bacteria	.207
326	Vegl promoters - Bacillus subtilis and E. coli	.208
327	Xer-cise gene excision; Xer recombinases - Bacillus subtilis	.209
328	Agrobacterium tumefaciens RpoA co-expression transcriptional activator - E. coli	.210

Entry	Number Monograph Titles	
329	Avidin affinity fusion protein affinity tags; Biotin purification; PinPoint Xa	
	Protein Purification System - E. coli	
330	Biogenerics manufacturing technology packages - E. coli	
331	BL21(DE3) competent E. coli cells	212
332	C-LYTAG affinity fusion protein tag; Streptococcus pneumoniae	010
000	N-acetylmuramoyl-L-alanine amidase LytA - E. coli; purification	
333	Campylobacter jejuni glycosylation genes; OTase of C. jejuni - glycosylation; E. coli	
334	Chaperone expression plasmids; DnaK, DnaJ and GrpE chaperones - E. coli	
335	cis-Acting Peptide chaperones - E. coli	
336	Codon-Optimized, Expression-Ready E. coli Clones	
337	Continuous culture - bacteria; E. coli	
338	Disulfide isomerase coexpression; DsbC and DsbG - E. coli; disulfide bonds and folding	217
339	Elastin-like polypeptide (ELP) self-cleaving fusion protein tags - chromatography-free purification; E. coli	218
340	ExpressProtect; p26, SicA, and alpha-crystallin-type fusion protein tags - E. coli	219
341	High copy number plasmids; pBGP120 - E. coli	219
342	High transformation efficiency (Hte) competency - E. coli cells	220
343	His-Patch ThioFusion System; pThioHis vector - E. coli; fusion proteins	220
344	N(pro) fusion protein tag, self-cleaving; Swine fever virus N(pro) autoproteolysis; EDDIE - E. coli	221
345	OverExpress C41(DE3) and C43(DE3) - E. coli strains	
346	OxIT plasmids; Oxalate/Formate Exchange Protein - E. coli	
347	pBR322 - E. coli plasmid; antibiotic selection	
348	pCold vectors; Cold Shock Protein A (cspA) promoters - E. coli, cold induction	
349	pET Expression System; T7 promoter; pET Directional TOPO Cloning; Champion pET	
0.0	Expression Vectors; T7 RNA polymerase (T7 RNAP) - E. coli	224
350	pMAL Protein Fusion and Purification System; Maltose binding (MBP) fusion	
	affinity tags; pMAL plasmids - antibody fragments; E. coli	227
351	Polyhydroxybutyrate (PHB) fusion tags, self-cleaving coexpressed with	
	affinity medium - E. coli; universal	228
352	Red/ET recombination; ET cloning/ET recombination; GET recombination;	
	Recombineering; £f Red-mediated recombination; lambda-mediated	
	recombination - E. coli	229
353	Skp and DsbC chaperone fusions - E. coli; secretion control	230
354	Tac promoters - E. coli	231
355	Tryptophan (trp) promoters - E. coli	231
356	WACKER Secretion System; E. coli K12-based secretion system - antibody fragments	
357	Flavivirus vectors; Kunjin replicon vectors - prokaryotes; Streptomyces; prokaryotes	
358	Streptomyces inducers	
359	Streptomyces lividans strains; xysA promoters	

Entry N	lumber	Monograph Titles	
Yeas	ts		
360	AlcoFree Yeasts; Sacch	naromyces cerevisiae KOY.TM6* strains	234
361	ALEU2 marker; AHSB4	promoter; Arxula adeninivorans expression	
362	Aspergillus niger expres	ssion; A. niger A4 promoters - humanized antibodies	
363	Aureobasidin A vectors	(pAUR) - selectable marker in yeasts	
364	Calnexin chaperone - H	łansenula polymorpha; yeasts	
365	Chitin synthase (CHS1)	, Yeast growth factor, chitin synthase (CHS1) -	
	yeast promoter discove	ery	237
366	Estradiol-dependent er	hancer; Gal4-ER-VP16 - yeasts	237
367		genase (FLD1) promoter; Formaldehyde selection -	
			238
368		eraldehyde-3-phosphate dehydrogenase-derived	000
260		via voate	
369 370	• •	nic - yeasts	
370		hate induction -yeasts	
372		2 protein (Vff2p) enhancer - yeast; bacteria; CHO cells	
373		2 protein (Vff2p) enhancer - yeasts	
374		east optimization	
375		ression - Saccharomyces cerevisiae	
376		siae, cold induction	
377		ctor System (SEVS); SecHancer vector - Saccharomyces cerev	
378		Production System; Pichia pastoris - glycosylated antibodies	
379		nnose induction	
380	•	stem; Glycoswitch plamids - yeasts; glycosylation	
381		y expression	
382		romoters	
383		yeast"; Pichia pastoris AOX1 promoters	
384	Aminoglycoside adenyl	yltransferase (aadA1) promoter - bacteria; eukaryotes	
385	ColE1 plasmids, E. coli	- prolonged viability	248
Mam	mals		
386	CMV/R Promoter - euk	aryotes	
387	piggyBac transposon -	eukaryotes; insect cells	249
388	Tax-inducible expression	on; Bovine leukemia virus (BLV) promoter - mammalian cells	250
389	BacMam; pBacMam ve	ectors - mammalian vectors, baculovirus-based	250
390	Calnexin, calreticulin, E	rp57, Hsp40, and Hsp70 chaperones - mammalian cells	251
391	CCT promoters - mami	nalian cells	251
392	ClonePixFL Selection -	antibodies, mammalian cells	252
393	Hsp60, Hsp70, Hsp90,	Hsp100 chaperones - mammalian cells	252

Entry	Number	Monograph Titles	
394	IRF-1 estroge	n receptor promoter; Estradiol induction - mammalian cells	
395	Osteoclast-as	ssociated receptor (OSCAR) promoter - mammalian; CHO cells	253
396	pAccAB vecto	ors - antibodies; mammalian cells	253
398	RP Shift; Sen	escence induction; PACE Expression Vector - mammalian	
	cells; express	ion enhancement; antibodies	254
399	Semliki forest	virus (SFV) vectors - mammalian and insect cells	255
Chin	iese Hamste	er Ovary (CHO) cells	
400	CHEFI expres	sion; CHO elongation factor-la (EF-lalpha) promoter - CHO cells	256
401	CHO cells - a	ntibodies; serum-free media	256
402	CHO cells dh	fr RNA interference; RNA silencing vectors - CHO cells	257
403	CSL4S-342 C	CHO cells (CHO-K1 CSL4S-342)	258
404	Osteoclast-as	ssociated receptor (OSCAR) promoter - mammalian; CHO cells	258
405	Pangen CHO	expression	258
406		omanufacturing System; pBFdfhr.2 Expression Vector -	
		tibodies	259
407		neric Antibody Expression (TCAE) vectors; ANEX vectors;	
100		TCAE 8 (ATCC 9119); Kozak sequences, impaired - antibodies	
408		eneration; UTRtech; "Cell Factories"; Gaussia luciferase signal abs supersecretion; CHO cells	
409	DNA microinje	ection - transgenic animals, chickens	261
HEK	-293 cells		
410	293ST-3F6 ce	Il line; HEK-293 adapted to SFM	
411	CRE-inducible	e expression; cyclic AMP response elements (CREs) - HEK-293 cells	
412	HEK-293 exp	ression	
413	HEK-293 exp	ression	
414	pTT vectors for	or HEK-293E cells	
Plan	ts		
415	Magnifection;	magnICON; Transgene Operating System (TOS) - antibodies;	
	plants and pla	ant cells	
416	MARs PLUS;	Matrix attachment regions PLUS - plants	
417	Concert Plant	-Cell-Produced system - tobacco plant cell culture	
418	Phyton plant	cell fermentation	
419	ExpressTec ex	xpression; ExpressPro; ExpressMab - rice and barley; antibodies	
Inse	cts		
420		apoptosis inhibition; Sf9P35AcV5-1 and Sf9P35AcV5-3 -	
	insect cells, a	poptosis resistance	269
421		cell line	
422	BL-Sf-21AE-0	CI 3 cell line - Insect cell lines, baculovirus hosts	270

Entry Number Monograph Titles			
423	Cre/loxP Recombination-Mediated Cassette Exchange (Cre/loxP RMCE) - Drosophila		
	(mosquitos)270		
424	Drosophila expression27-		
425	Drosophila melanogaster S2 cells; Drosophila-SFM.D.Mel-2 Cells; Schneider S2		
	Drosophila cells; S2 cells, SFM - insect cell culture27		
426	IE-1 (BmNPV 1.2 kb fragment) promoters; Bombyx mori actin promoters - insect cells27		
427	Insect cell lines - baculovirus hosts		
428	Insect cells, per os (oral) baculovirus infection273		
429	Lymantria diapar nucleopolyhedrovirus and L. dispar 652Y (Ld652Y) cell lines -		
	baculovirus host cells274		
430	plEx baculovirus vectors; hr5 enhancer; ie1 immediate early promoter - insect cells;		
	avoid baculovirus pathogenicity274		
431	Rhopalosiphum padi virus Internal Ribosome Entry Sequence (IRES);		
	Picorna-like virus IRES; Drosophila IRES - insect cells; plant cells		
432	Tni PRO; Trichoplusia ni cell line276		
433	BAC-TO-BAC Baculovirus Expression System; baculovirus shuttle vectors;		
	bacmids - insect vectors produced in E. coli277		
434	BacTen System; p10 promoter vectors - insect cells277		
435	Baculovirus vectors and promoters - glycosylation278		
436	BestBac vectors; Autographa californica nuclear polyhedrosis virus (AcNPV) vectors -		
	insect cells		
437	Drosophila sialyltransferases - insect cells; glycosylation279		
438	Sapphire baculovirus expression - disulfide bond formation279		
439	Vankyrin enhanced baculovirus expression vector system (VE-BEVS);		
	Vankyrin-enhanced cell lines (VE-CL)		

Indexes

Company/Organization Index	
Subject Index	
Primary Host/Organism Index	

Expression Systems and Genetic Engineering Technologies: Opportunities for Innovators, CMOs and Product Developers

by Ronald A. Rader

Introduction:

New expression systems and recent improvements available for current systems have the potential to revolutionize the biopharmaceutical industry! As reflected by currently marketed products, since the advent of genetic engineering in the 1970s, there has been little basic change in the technologies used for commercial-scale manufacture of biopharmaceutical products. Nearly all current products are manufactured using much the same old, familiar technologies – primarily using *Esherichia coli* (*E. coli* bacterium), Chinese hamster ovary (CHO) cells and the yeast *Saccharomyces cerevisiae* (*S. cerevisiae*) as hosts – technologies invented in the 1970s and commercialized in the 1980s.

SEE REPORT FOR 316 PAGES OF DETAILED INFORMATION

Biopharmaceutical Expression Systems and Genetic Engineering Technology Current and Future Manufacturing Platforms

New expression systems have the potential to revolutionize the biopharmaceutical industry! Until recently, there has been little basic change in the technologies used for commercialscale manufacture of biopharmaceutical products. Nearly all current products are manufactured using much the same old, familiar technologies – primarily using Esherichia coli (E. coli bacterium), Chinese hamster ovary (CHO) cells and the yeast Saccharomyces cerevisiae (S. cerevisiae) as hosts – technologies invented in the 1970s. Today, a number of factors are rapidly changing the biopharmaceutical manufacturing environment. Scientific and technological advances offer significant advantages. Recombinant protein manufacture that typically involved multi-1000 liter bioreactors and dedicated facilities can now be accomplished using bioreactors an order of magnitude smaller.

Expression systems – These systems encompass the technologies needed to genetically modify organisms for the manufacture of recombinant proteins (including glycoproteins and antibodies). This book is perhaps the single most informative source concerning commercial biopharmaceutical product manufacturing-related expression systems and basic engineering technologies. The primary goal is to inform the user of the manufacture of biopharmaceutical products. This directory should save the reader considerable time and effort in finding technologies relevant to his or her interests. It should reliably cover relevant technologies currently being used commercially, those being actively offered for licensing, those discussed in industry news sources and review articles, and those offered by leading genetic engineering and bioprocessing technology licensors.

Coverage - This directory concentrates on what is used or needed for upstream manufacture. Coverage concentrates on host cells/organisms, basic genetic engineering methods, recombinant constructs and the many technologies available to enable or improve expression of desired proteins, including glycoproteins and antibodies. This directory concentrates on the core genetic materials (e.g., host cell lines and organisms) and related methods and materials, e.g., vectors, promoters, selection and amplification methods, chaperones, etc., used or claimed useful for commercial-scale manufacture of biopharmaceutical products, primarily recombinant proteins and monoclonal antibodies.

November 2008

